
Problem 3

Description

A steel bar is supported at its ends, A and B, by two identical vertical springs. Each spring has a stiffness of k = 45 kN/m and is initially unstretched. A vertical load of 3 kN is applied at node C, located 1 m from end A and 2 m from end B. Neglect the weight of the bar and use the material properties of steel (E = 200 000 kN/m², I = $4.6875 \times 10^{-6} \text{m}^4$).

Determine:

Vertical displacement of node C.

Model

Units:	m, kN
Element:	Beam element
Material:	Steel, $E = 2.0 \times 10^8 \text{ kN/m}^2$
Section property:	Beam: I = 4.6875×10 ⁻⁶ m ⁴
Constraints:	Ux restrained, Uy – spring with ky = 45 kN/m
Load Case:	Beam concentrated load –3 kN are applied at nodes C in the Y direction.

Results

Project Title:			Untitled Project	
Load Case/Combination:			LCO - Default Case	
Units:			m	
Element	x/L	Ux	Uy	Ur
1	C	0	-0.04444	0.00563
1	1	. 0	-0.03846	0.006696
2	C	0	-0.03846	0.006696
2	1	. 0	-0.02222	0.00883

Comparison of Results

Node	Deformation, mm			
	Theoretical	RodX	Midas/Civil	
Δy(C)	-38.5	-38.5	-38.5	

Reference

1. Hibbeler R. C, Mechanics of Materials, 10th Edition in SI units, 2017, Pearson, example 12.16, p.648